
Considerations and Tradeoffs for Cloud

Storage-backed Cutouts fromAstronomical Data
Michael St. Clair, Sierra Brown, ChaseMillion (Million Concepts)

version 1, 2022-09-27

motivation and background
Astronomical data sets are very large (and they keep getting larger), so it is important to find

efficient ways to serve data to users. In this document, we discuss the the time, monetary, and

resource costs associated with a number of cloud access strategies, and give recommendations for

situations in which a particular choice of strategy is likely to be preferable. (Spoiler: sometimes
transferring less data can takemore time due to request overhead).

Specifically, this study investigated optimal methods for taking “cutouts” from astronomical

images in the FITS format stored on AWS S3. (We tested with Spitzer, GALEX, HST, Pan-STARRS,

and JWST data, along with some synthetic data.) The “cutout” problem is common in astronomy,

because individual astronomers are often interested in a few sources of interest within a large

image array. Current best-in-class cutout solutions (like the Pan-STARRS cutout service) are

generally not backed by cloud storage.When a user requests a cutout, an on-premises server runs

some code to slice elements from an array and serves it to the user over the internet. Services of

this type are extremely useful but have some limitations. They can accept only a limited number of

simultaneous requests before being overwhelmed. They often require institutions to hold data in

on-premises storage hardware. Maintaining hardware for services like this across multiple data

sets is expensive and tends tomake data fusion harder, as it does not allow requests that index

multiple data sources at the same time (particularly if these data sets are held by separate

institutions).

We believe that backing cutout operations with cloud storage has the potential to provide

higher-quality, cheaper, more scalable performance and also lower barriers to interoperability

between datasets. However, it also has the potential to provide worse performance at higher cost.

This document attempts to help you avoid these pitfalls.

Also note that the cutout problem is not unique to astronomy: many other scientific applications

require only a small proportion of the data contained in individual data resources. These data

structures aren’t unique either: in particular, the fields of terrestrial and planetary remote sensing

generate similarly-structured imaging data (n-dimensional binary arrays) and data volumes (with

files in the tens to hundreds of megabytes and total data corpuses on the scale of terabytes). This

means that most of our results could be extrapolated to other scientific fields and formats,

although implementationmight differ (e.g. regionsmight be defined by geospatial rather than

celestial coordinates).

notes on FITS (flexible image transport system)
We assume that our readers are generally familiar with the FITS file format1, which is ubiquitous in

astronomy and allied fields. However, wewould like tomake a few notes about how the special

characteristics of FITS affect its use as a cloud storage format.

FITS is essentially a container format: data objects in FITS files are containedwithin ‘extensions’ or
‘HDUs’ (header/data units), and a single FITS file may havemanyHDUs. Individual HDUs are

arranged in distinct, sequential byte ranges within a FITS file. The fact that a FITS file may contain

many semantically-distinct data products, laid out in predictable, contiguous ranges, is a major

reason that incremental read strategies often work well on FITS files (we discuss this later in more

detail).

There are three standard types of FITS extension: images/arrays, binary tables, and ASCII tables.

FITS files may also contain a ‘primary data array’, which is essentially identical in format to an

image extension. The FITS format supports storage of tile-compressed images in binary table

HDUs2, which is becoming increasingly popular and is well-suited for subsetting. This investigation

was restricted to taking subsets of “images”, so we investigated both image/array HDUs and

tile-compressed images in binary table HDUs.We did not investigate subsetting in ASCII table

HDUs or in binary table HDUs used for other purposes.3

Standard FITS image extensions are extremely straightforward data structures: regular binary

arrays of up to 999 dimensions (arrays of more than 3 dimensions are rare in practice). They are

similar tomany other flat-binary array / raster image formats (e.g. ENVI rasters, PDS IMG),

although they specifically do not support embedded structures like line prefix/suffix data that

tend tomake random access more difficult.

3 Prior to v1.0 of the FITS Standards (NOST 1993), FITS also supported a ‘random groups’ structure that
implemented struct/record-like data storage using clusters of regular arrays and pointer-likemetadata
(Greisen andHarten 1981). This structure did not see wide use outside of radio interferometry and has been
deprecated for almost 30 years except for legacy support; its functions have been replaced by binary table
extensions. It is outside the scope of this investigation.

2Original specification inWhite et al 2013.; see also section 10 of the FITS Standards

1 See IAUFWG2018, henceforth “FITS Standards”, for a complete specification of the FITS format. Unless
otherwise noted, all subsequent statements about the permissible features of FITS files implicitly reference
this document.

cloud storage and subsetting definitions
An object4 is a named sequence of bytes, along with a collection of metadata, contained in and
served by an object storage system like AWS S3. It is closely analogous to a file in a traditional
filesystem, and it is usually possible to transfer a file’s contents into an object storage system,

retrieve the resulting object, and exactly5 reconstruct the original file (or vice versa). Because of

this object-file isomorphism, people often casually refer to objects as files. However, they are not

the same. Object storage offers fantastic scalability, but objects provide only a fraction of the

features we expect from files, and the features they do provide often perform in qualitatively

different ways; moreover, users of object storage systems have no direct access to the

filesystem(s) that may (or may not) back an individual object. In this document, we use the term

data resource to refer to the supercategory of files and objects.

S3 subsetting is a strategy for improving data access efficiency by reading only portions of the total
content of an S3 object. Although it is possible to implement S3 subsetting via a variety of

interfaces, the underlyingmechanism is always the same. AWS S3 supports use of the HTTP Range

header field in GetObject API requests. Specifically, a GetObject request may specify, in its Range

field, a single contiguous range of bytes; the body of S3’s response to that request will contain only

that range of bytes from the object, rather than all of the object’s bytes.6Manyweb resources

other than S3 implement handling for HTTP Range headers. This means that very similar variants

of this strategy could be used onmost other cloud object stores (such as Google Cloud Storage) or

even on traditional web servers. However, these storage backends were outside the scope of our

investigation.7

A read operation8 is a discrete software action that loads a data resource, or a portion of a data

resource, into workingmemory. Exactly how read operations work varies widely across computing

environments and storage interfaces. On S3, read operations are HTTP requests (often abstracted

by interface libraries).

In the general case, S3 subsetting is an example of a random-read strategy: a method of data access
that involves executingmultiple read operations to access discontiguous portions of a data

8 This document is about reads, not writes. Analysis of efficient write operations is very different. Also,
subsetting is largely inappropriate for write operations to object stores.

7 If implemented on a cloud object store other than S3, the name S3 subsettingwould obviously then be
inaccurate.We suggest themore general term cloud object subsetting for this class of strategies, independent
of provider.

6 See Fielding et al. 2022 for a complete technical specification of the HTTP Range header field, and AWS
2022 for a fuller description of how S3GetObject API calls implement this specification. Note that S3 does
not accept multiple non-contiguous ranges in a single GetObject call, and to our knowledge, other major
object storage providers don’t either. If they did, many of the tradeoffs we describe heremight be very
different (depending on performance).

5Not counting filesystem-specificmetadata likeMAC times and permission bits.

4 This term is dismayingly overloaded in computer and information science, but there is no other general
term for the discrete data artifacts contained in and served by object storage systems.

resource. In some cases, however, it can act more like a sequential-read strategy: a method of data
access that involves executing a single read operation to access a contiguous portion of a data

resource (but not necessarily the entirety of the resource). Sequential reads aremore efficient

than random reads in almost every computing context (although the costs of random access differ

greatly between contexts), and S3 is no exception.Wewill discuss cases in which S3 subsetting is

“more sequential” later in this document.

tradespace

introduction
Random-read I/O buffering andmemory-mapping strategies are widely used on locally-stored

FITS files by libraries and applications like CFITSIO, astropy.io.fits, and TessCut. The performance
improvements offered by these strategies were amotivating factor for this investigation.

However, the tradespace for S3 subsetting differs both quantitatively and qualitatively from the

tradespace for random reads on locally-stored files. Strategies thatmake sense for files do not
alwaysmake sense for objects. In this section, we discuss tradeoffs between a variety of costs –
primarily operation time, price, and resource pressure – to help readers make informed decisions

about cloud access architecture.

This section includesmany illustrative examples based on approximate formulae. Please note that

these figures are not empirical measurements (unless otherwise stated). To fully assess the quality

of a specific access strategy or technology stack,we strongly encourage collectingmetrics in a
realistic deployment environment.As a separate component of this investigation,we developed a
configurable benchmarking suite9 to facilitate this type of testing.

transfer speed & request latency

overview

Every read operation takes time. The requester must compose the operation; the signal must

reach the storage backend; the storage backend must process it and physically retrieve the data;

the responsemust return to the requester. Depending on the environment, this time cost might be

directly described as access time, seek time, ping, indirectly referenced bymetrics like IOPS
(input/output operations per second), etc.Wewill refer to it as request latency. In general, request

9 The benchmark suite is a submodule of the ‘subset’ library in the fornax-s3-subsets repository:
https://github.com/fornax-navo/fornax-s3-subsets/tree/main/subset/benchmark. Installation instructions
are here:
https://github.com/MillionConcepts/fornax-documents/blob/main/benchmark_suite_instructions.pdf

https://github.com/fornax-navo/fornax-s3-subsets/tree/main/subset/benchmark
https://github.com/MillionConcepts/fornax-documents/blob/main/benchmark_suite_instructions.pdf

latency does not scale with transfer volume. It can be thought of as a kind of transaction cost, or,

equivalently, the constant-time component of data read time costs.

All random-read strategies, on any type of storage, trade read operations for transfer volume.
Youmust perform extra read operations to access some portions of a data resource while skipping

others. If these extra read operations aremore expensive than it would be to read thewhole
data resource intomemory, then they are not a good idea. You should just read the whole
resource. Attempts to optimize read strategies often center on finding this crossover point.

This tradeoff is sharp and unforgiving in the cloud, because read operations on cloud objects are
very slow relative to locally-stored files (or files in many cloud filesystems, including AWS EBS10,

11). Data access time for locally-attached solid-state drives (SSDs) is measured inmicroseconds;

mean SSD request latency is typically in the 70-250 us range (and can be significantly better with

high-performance hardware in optimized scenarios). Fast magnetic hard disks (HDDs12) have

mean request latency around 1-5ms; fewmodern HDDs havemean request latency > 15ms (and

HDDs even that slowwould likely be in “cold” backup roles). Conversely, the very-best-case request
latency for S3 is ~19ms (a HeadObject or ListBucket request for a single frequently-accessed

object, issued from an EC2 instance to an S3 bucket in the same AWSRegion, not counting the
caller’s handling time for the request or response). 30-80ms request latencies aremore typical

even in quite good cases, and 200+ms request latencies are very common for calls made from

outside of the AWS ecosystem, even for callers in the same general geographic region with good

internet connectivity.

To summarize: read operations on S3 objects are typically 1-3 orders of magnitude slower than
on local files. This makes request latency, inmost cases, the primary driver of differences
between local and cloud read-strategy tradespaces.

Transfer speed is data volume transferred per unit time. In local storage contexts, maximum
transfer speed is often called throughput; in networking contexts, bandwidth. Confusingly, these
two terms are often used to refer both to themaximum speed of individual transfer operations,

and to the total speed a particular channel or interface can support across all simultaneous

transfers. This distinction is extremely important in networked contexts that use distributed

delivery networks (like S3), so in this document, we use ‘bandwidth’ and ‘throughput’ to refer only

tomaximum total speed.

12 It is more difficult to predict HDD than SSD request latency due to the complex interactions between
actuator arm and rotational latencies. It can vary a great deal between differently structured and sequenced
operations and filesystems on the same physical drive.

11Not all cloud filesystems offer fast read operations relative to S3. For instance, many AWS EFS
configurations have fairly poor request latency.

10 Predicting EBS latencies is difficult because of EBS’s deep, opaque virtualization and networking stack.
However, the figures we give here for SSDs andHDDs tend to be in the correct ballpark for SSD-backed EBS
volume types (e.g. gp2 & gp3) andHDD-backed EBS volume types (e.g. sc1 and st1) respectively, with the
notable exception that small (<1 TB) HDD-backed EBS volumes can have extremely poor request latency, up
to 100ms in some cases.

Weemphasize that request latency is the primary difference between local and cloud read

strategies becausemost information technology professionals – including us – initially assume

that transfer speedwill be the bottleneck in any use of cloud object storage, and that whatever it

takes to reduce total transfer volume is probably worth it. This intuition is driven by the fact that it

is very common for us to wait impatiently for large files to finish uploading or downloading – files

we could copy inmeremoments between local filesystems – but uncommon for us to attempt to
upload or download thousands of small files at once. Transfer speed and bandwidth are important.
But latency is almost always a bigger difference between data resources stored locally and data
resources stored in the cloud.

Moreover, as read operation volume increases, themarginal data volume savings per operation

decreases. One contributor to this is the fact that each read operation has volume overhead –

metadata contained in the response – and AWSAPIs tend to be fairly verbose. A request for even

a single byte of an object returns about a kilobyte of metadata. In other words, single-minded
pursuit of data transfer savings is usually self-defeating. For instance, takingmany cutouts from a

single image is usually a bad idea; more generally, subsetting is usually not appropriate for use
cases that require a large proportion of the area of each accessed image (how large a proportion

depends on the image and environment).

Also note that request latency and transfer speed are not the only contributors to the time costs
of additional read operations. For instance: it is oftenmore computationally expensive to handle
many small chunks of data than a single large chunk of data, each chunk of datamust be

transferred between various local memory resources, composing API requests and parsing API

responses takes time, and so on. Transfer optimizations do not necessarily improve this situation;

in fact, any transfer optimizations in placemay themselves incur time costs. Although the

subsetting time budget tends to be dominated by transfer time costs, these factors are also

important.

In order to decrease the time cost of request latency, parallelization can be implemented. S3
handles parallel requests well, but not infinitely well. The number of requests per second it will
accept is variable, partly dependent on internet weather, affected by complex and secret

serverside load-balancing, and overall extremely difficult to predict. If aggressive retrieval
parallelization is in use, these other contributors can even grow to dominate the time budget.
Parallelization factors are very complex; we discuss them inmore detail in the ‘parallelization’

section below.

simplicity/atomicity <-> complexity/subsetting continuum

There are four basic types of data retrieval options for FITS arrays stored in S3 objects.We list

these in order from themost simple and atomic (transferring entire objects without slicing) to the

most complex and intensive (subsetting only the specific bytes of interest).We describe

uncompressed arrays here, but our comments largely also apply to tile-compressed arrays, on the

array-tile rather than array-element level (see “tile compression” below for more discussion of tile

compression).

1. Retrieve the entire S3 object: This method only takes one API call (a GetObject request) but
transfers the highest volume of data.

2. Retrieve only the extension of interest: This methodwill usually take at least 4API calls: a
HeadObject request for the object’s S3metadata, a GetObject request to read the SIMPLE

card and primary HDU, and a GetObject request to read the extension’s header and figure

out how big it is, and then a GetObject request to retrieve the extension. (If we are

interested in an extension after the first one, more requests, one per extension before the

one of interest, will be required to read each header and ‘seek’ into the object, unless the

request is meticulously constructed in a non-generalizable way. Conversely, if the array we

want is actually in the primary HDU, it may require only 3 API calls.) This method transfers
less data than retrieving the full object (assuming there aremultiple extensions).

3. Full-line subsetting: This method takes advantage of the row-wise layout of FITS arrays and
pulls every line that contains any array elements of interest. Because FITS files are in

row-sequential formats, this can be accomplishedwith a single retrieval request that pulls

all the rows of interest at once. This would not be possible for a request that pulled a full

column of data; it would have the same result as pulling the whole array. The situation

becomesmore complex with >2D arrays13. This usually requires the same number of

requests as retrieving the full extension; the final GetObject request retrieves just the lines

of interest rather than the whole extension. This method transfers less data than
retrieving the full extension.

4. Partial-line subsetting: This method only pulls the specific bytes of interest, but requires an
additional GetObject request for every line, as the byte ranges are noncontiguous
between lines. This is in addition to the (at least) 3 preliminary requests: HeadObject for

13 Things can get really bad really fast if you take a cutout from a >2D array in a "wrong" direction.

metadata, GetObject for primary HDU, GetObject for the extension’s header.While this
method transfers the least amount of data, it has the highest request overhead.

quantitative approximation

A simple, but useful, approximation of transfer time can be given by the formula:

transfer time = request count * request latency + transfer volume / transfer speed.14

Consider a FITS file with aminimal primary HDU and 3 image extensions, each of which is a

1500x1500 2D array in 32-bit floating point (much like a smaller Hubble drizzle image). Youwant a

40x40 cutout from the first image extension. The FITS file is stored as an S3 object, and you are in

an environment with 30-ms GetObject andHeadObject request latency15 in which S3will offer 80

MB/s transfer speeds on individual streams. (These are fairly typical figures for S3 to

general-purpose non-burstable EC2 instances, e.g., them6i family, within an AWSRegion. In

practice, these are not constant values andmay even change over the course of an operation.)16

16 Specifically, this is a realistic transfer speed for short / small transfers. Large within-Region single-stream
transfers from S3 to general-purpose non-burstable EC2 instances tend to peak at values closer to 200
MB/s. However, individual streams typically take several seconds to “spin up” to their full speed, so 200MB/s
is unrealistic for transfers with sub-second durations. Similarly, this request latency is realistic for objects
that are accessed very frequently. If the objects are not accessed quite frequently, these figures are overly
optimistic for subsetting, although request latencymight drop to this value over the course of a single
intensive subsetting operation as S3moves the object into a higher caching tier. S3’s variable request
latencies, along with the fact that S3 transfer speeds are partly a function of total volume transferred per
stream, are just two of many factors that make it difficult to compose truly accurate predictivemodels of S3
subsetting.

15Adding a range field to a GetObject request does not, in general, increase latency.

14 This model ignores many, many factors, such as volume-dependent variations in speed and latency.
However, it is often a decent first-order approximation of these factors of the tradespace.

Retrieval options:

1. Retrieve the entire S3 object (don’t subset). The object is ~27MB (~9MB per array;

primary HDU& headers have trivial volume). If the object’s name and general properties

are already known, retrieving it will take only one API call. Total transfer time is 30 [ms /

request] * 1 [request] + 27 [MB] * 1/80 [s/MB] * 1e3 [ms/s] = ~370ms.
2. Retrieve only the extension of interest (good in this case). The first extension is ~9MB in

total. As described above, this will take 4 API calls.

Transfer time for each array element is 4 [B / element] * 1 / 80 [s /MB] * 1 / 1e6 [MB / B] *

1e3 [ms / s]: 5e-5ms/element. Then total retrieval time is 30 [ms / request] * 4 [requests] +
1500^2 [elements] * 5e-5 [ms/element] = ~230ms. Retrieving single HDUs from a FITS
object is very often effective.17

3. Full-line subsetting (better in this case).Grabbing every ‘line’ / row that contains any

portion of the cutout again requires 4 API calls. Total time is 30 [ms / request] * 4 [requests]

+ 1500 * 40 [elements] * 5e-5 [ms/element] = ~120ms. This is a meaningful savings over
transferring the whole extension of interest.Whether or not saving 110ms is important

depends on the application, but subsetting is almost always effective for use cases that
only require single small cutouts.

4. Partial-line subsetting (bad in this case).Retrieving just the bytes of the cutout will take
30GetObject requests in addition to the 3 preliminary requests, one for each line / row: 30

[ms / request] * 33 [requests] + 40^2 [elements] * 5e-5 [ms/element] = ~990ms.
Partial-line subsetting hurts a lot in this case.

further time cost considerations

object/array size

Subsetting becomesmore effective as object (and array) size increases. If each of the image
extensions were 4200x4200 64-bit arrays, each extension would be ~128MB, the entire object

size would be ~384MB, and transfer time per element would be 1e-4ms. Transferring the entire

object would take ~4830ms18; atomically transferring the first extension would take ~1880ms;

full-line subsetting for a 40x40 cutout would take ~140ms; partial-line subsetting would take

~990ms. The pessimistic crossover point between atomic extension transfer and full-line

subsetting would occur between 38 and 39 cutouts. This is because transfer time for each line is

almost 6 times longer than in the smaller array, so saving total lines transferred remains

time-efficient up to the point you are transferring about a third of the array – and this iswithout
any readahead optimizations, and assuming an extremely bad case for cutout distribution. But it is

still the case that if you are using a very large proportion of an array, subsetting on amore
granular level than retrieving an entire HDU is generally unhelpful.

18 This is a bit pessimistic, as speedwill often increase a little by the end of these larger transfers.

17 Subsetting at the extension level basically treats a FITS file as a dataset or virtual filesystem. This category
of architecture is very popular in managed cloud processing frameworks (Spark, etc.)

This observation is really just a corollary of the principle that request latency does not scale with

data volume.While the small files have the same overhead request latency, the larger a file the

larger a portion of the overall time budget transfer speed takes up. However,most real-world FITS
files aren’t this big, and the ones that are tend to be stored in compressed formats.

number of cutouts

The basic character of these read options doesn’t change if a use case requires multiple cutouts

per object, but performance tradeoffs can change, especially if requested data rangesmay contain

data frommore than one cutout (as would be the case in option 2 if multiple cutouts were needed

from the same extension, or option 3 if multiple cutouts shared a line). The higher the percentage

of the total array is covered by cutouts, themore likely it is that a simpler read techniquewill be

more effective. Basically, subsetting gets less effective if youwantmore than one cutout. The
‘crossover’ point in the small-array quantitative example between ‘full-line’ subsetting and

retrieving the full HDU (assuming no cutouts share the same lines) occurs between 3 and 4

cutouts: 4 cutouts will take 30 [ms / request] * 7 [requests] + 1500 * 160 [elements] * 5e-5

[ms/element] = ~220ms.

Transfer-time optimizations can bemade at intermediate layers of the stack. If the cutouts share
any lines, the use of in-memory caching or automated request chunking can reduce the total

number of bytes transferred and/or reduce the number of required requests. Fixed or adaptive

readahead strategies can also reduce request volume (sometimes not just for cutouts). In the best
empirical cases, these optimizations allow request volume to grow roughly as the square root of
the cutout count rather than linearly.

Nomatter howmany clever optimizations are in place, as the number of required cutouts and/or
proportion of array volume covered by cutouts go up, the less effective subsetting is vs.
transferring thewhole array. Similarly, there is no one-size-fits-all time-transfer optimization; a
specific optimizationwon’t always be helpful andmay even hurt. For instance: consider a
retrieval backend set to an 8MBminimum readahead size, but with nomemory caching (or

ineffectivememory caching, or simply bad luck19). This would be excellent in many cases. However,
even on that big 4200x4200 64-bit array, 16 cutouts would transfer at minimum the full volume of

the extension in addition to their request latency overhead.More would always beworse than

transferring the full extension in both volume and time.On the 1500x1500 32-bit array, this
crossover point would occur at only two cutouts! Selecting – and implementing – transfer-time
optimization strategies is a nontrivial problem.

scientific use case

The time savings offered by subsettingmust be assessed in the context of the overall time
budget of a particular scientific use case.

19 Evenwith perfect memory caching, with strict 8MB readahead, youmust always retrieve at least 8MB
per request. Thus, even if you aremissing a single byte from the next cutout, you’ll still have to retrieve 8MB
to add that single byte to your cache.

Good use case for subsetting:Assume our 4200x4200 64-bit array is a single tile from a full-sky

survey that includes 250000 total images. Based on analysis of another dataset, an astronomer

has identified 5000 sources of interest, scattered across the entire sky such that each tile of our

full-sky survey contains at most one source. The astronomer would like to perform simple

aperture photometry on each of these sources to add spectral depth to their existing analysis;

these photometric operations will each take 50ms. Retrieving all 5000 S3 objects and performing

aperture photometry on a single source from eachwould take almost 7 hours. If this analysis is

blocking (in the project management sense), this might be an entire day of work lost to staring

listlessly at a progress bar. Conversely, retrieving just a cutout around each source of interest will

only take ~15minutes; the astronomer can just take a coffee break and return to doing science.20

Bad use case for subsetting:An astronomer would like to perform complex Bayesian photometric

analysis of a field that covers just the “upper” third of our 4200x4200 64-bit array. This analysis

will take roughly an hour to execute. Retrieving the upper third of that array would take ~708ms, a

savings of over 4 seconds compared to just retrieving the whole object – amazing!However, this
retrieval time savings reduces the overall time cost of the analysis by barely over a tenth of a

percent. Subsetting is likely not worth the bother.

bandwidth limitations

Intuitively, subsetting should bemore time-effective in low-bandwidth environments.However,
request latency often remains equally important in bandwidth-constrained environments,
because factors that decrease transfer speed from S3 also tend to increase request latency. For
instance, from the computer I amworking on right now inmy office, I get ~20MB/s single-stream

transfer speeds from S3 buckets in us-east-1, and best-case request latency ~110ms. Request

latency and transfer speed are both roughly 4 times slower than in the EC2 examples above.

Although the situation is worse overall, the relative contributions of these factors tomy overall
time budgets are about the same as they are on EC2.21

request and transfer volume: monetary and resource costs

reasons to care i: money

21As above, this analysis is true for small transfers, ‘small’ meaning < ~100MB – a capwell above the transfer
sizes involved inmost subsetting operations. Transfer speed differences betweenmy local environment and
EC2would be larger for larger arrays – especially full extension/object transfers – and it would come to
overshadow request latency inmy overall time budget.

20 This is somewhat optimistic, because 30ms response time assumes that all of those files are
regularly-accessed and in one of S3’s higher (and completely opaque) caching tiers. Amore realistic
assumption of 80ms response times takes us up to a little over 30minutes. (Perhaps the astronomer can
walk to a nearby coffee shop.)

There aremany reasons organizations choose to implement portions of their IT infrastructure in

vendor cloud services rather than on-prem equipment, but monetary costs are often amajor

factor. Switching from on-prem to cloud services tends to replace fixed costs with variable costs.

These variable costs are often smaller, but are highly multifactorial and can be difficult to predict.

An overview of all the cost considerations involved in S3-backed astronomical data services is

beyond the scope of this document. However, it is useful for an organization to consider how FITS

subsetting strategies might affect the bottom line. Thus, we provide a detailed analysis of how it

might modify individual drivers of cloud costs.

In most applications, the largest drivers of S3 costs are stored data volume, storage tier, API request
volume, and transferred data volume (often called data egress). Because data access strategies like
subsetting have no first-order effects on stored data volume or tier, we assume in this document

that stored data volume and storage tier are non-negotiable quantities: the organization holds the

data it holds, and it must serve themwith high availability (meaning in the S3 Standard Tier)22. This
leaves only request volume and data egress as points of discussion.

cost of data egress

It usually costs money to transfer data out of AWS (including S3).As of 2022-09-15, assuming
that a hosting account transfers over 150 TB of data from S3 to the open internet eachmonth, the

marginal cost of transferring 1MB to the open internet is 5e-5 USD. (S3 egress fees scale down

from 9e-5 to 5e-5 USD/MB at three separate volume/month cutoff points.)

However, not all AWS data transfers directly cost money.Data transfer within an AWSRegion is

free, and data transfer betweenAWS regions is cheaper than transfer fromAWS to the rest of the

internet. If you can keep all your work on AWS and in a single Region, you can avoid egress fees,
although bandwidth is still a limitation, whichmay indirectly drive costs. Additionally, many
scientific archives receive discounts or waivers for S3 egress (and storage) fees, either through

membership in the AWSOpenData Sponsorship Program or individually-negotiated sponsorship

agreements. Readers from these institutionsmay find this discussion less relevant to their

concerns. However, the terms of these agreements generally include a variety of caps and

carveouts – particularly for non-public data holdings – so they do not reduce egress costs to 0

even in the best case.We also feel it would be unwise to assume that theOpenData Sponsorship

Programwill be in existence forever. So, even if you’re in an AWS sponsor program, you should
probably keep an eye on potentialmonetary costs of egress.

In cases where data egress fees are absent or waived, data transfer price depends only on
request price. As we saw earlier,more complex subsetting requiresmore API requests, so

22 Storing objects in other tiers can enormously change these tradeoffs, both quantitatively and qualitatively.
Onemajor difference is that data retrieval, not just egress, may have associated charges. Requests may also
bemuchmore expensive.

without data egress fees, subsetting will always increase total transfer costs. This means that if
egress fees are not a consideration, you should strike anymonetary transfer savings from the

examples below. However, youmight still save time, and – as we also discuss below – time isn’t

alwaysmonetarily free.

cost of requests

Although egress is free inmany cases, requests are almost never free.Requests made from an

EC2 instance to an S3 bucket in the same Region cost the exact same amount as requests made to

that bucket from the open internet. Sponsorship agreements rarely waive request fees. Request

costs can end up being trivial, but they are almost never absent.Not all S3 requests cost the same
amount of money. S3 request charges come in two ‘tiers’ depending on the specific API call. In
general, write-type requests cost an order of magnitudemore than read-type requests (with the
notable exception of LIST requests). For instance, as of 2022-09-15, for objects stored in S3
Standard Tier in US-East-1, each GET andHEAD request costs 4e-7 USD, while each PUT request

costs 5e-6 USD.

A simplifiedmodel of transfer (egress + request) price for a particular read operation is given by

the equation below:

transfer price = number of requests * price / request + transfer volume * price/unit volume

tradespace examples/synthesis

There are threemain regions of the time-volume-complexity tradespace. When required cuts
on the data are simple, subsetting techniques save both data egress (volume) and time. However,
there is a crossover point after which increasing subsetting complexity continues to save
volume but begins to cost time23; finally, there is a ‘ceiling’ past whichmore complex subsetting
only costs time (and in practice usually also volume). For an extreme case, subsetting each
element from an array can never save volume over transferring the whole array; this is the

theoretical lower bound for the density/complexity ‘ceiling’. However, various sources of overhead

(such as the data volume of the response headers and the higher number of API requests required)

will alwaysmake subsetting cost more in both time and egress than just transferring the whole
arraywell before this theoretical lower bound.

example 1: small FITS objects

Consider retrieval options (on the small array) using our simplemodel above, let’s assume our user

wants to retrieve a single 40x40 cutout from each of 5000 such objects.Because S3 subsetting
(like all random-access strategies) trades transfer volume for request volume, it also trades
egress fees for API request fees. The table below describes the volume/time/price tradeoffs for

23As discussed above, this is because request latency does not scale with transfer volume.

this example. Subsetting definitely savesmoney in this case; however, partial-line subsetting is
slower and also not cheaper than full-line subsetting.

Retrieval option Transfer volume (per object) Time (per object) Cost (total 5000)

Full object 27MB 370ms ~$6.50

Single-HDU 9MB 230ms ~$2.00

Full-line subsetting 0.24MB 120ms ~$0.07

Partial-line subsetting 0.0064 990ms ~$0.07

example 2: multiple cutouts

Again on 5000 of these FITS objects, consider varying required numbers of cutouts per array,

weighing full-extension vs. full-line retrieval. The table below describes the volume/time/price

tradeoffs between single-HDU and full-line subsetting for 1, 2, 5, and 20 cutouts (taking additional

cutouts does not change volume, time, or price for single-HDU subsetting).Wewould hit the

request-volume price crossover point between 33 and 34 cutouts / object. As with earlier

high-complexity examples, this is illustrative but not realistic: in practice, without a

laboriously-designed special-purpose codebase, taking that many cutouts from such small arrays

wouldmake everythingworse.

Retrieval option 𝚫volume (per object) 𝚫 time (per object) Cost (total 5000)

Single-HDU 0MB 0ms ~$2.00

1 cutout (full-line) 8.76MB -110ms ~$0.07

2 cutouts (full-line) 8.52MB -70ms ~$0.13

5 cutouts (full-line) 7.80MB +30ms ~$0.31

20 cutouts (full-line) 4.20MB +472ms ~$1.25

time as amonetary cost

In some cases, time is also a direct driver of monetary costs. Two common cost-of-time categories

are work hours and instance hours. Assume our hypothetical user is “on the clock”, billable at

$80/hr. In the 20-cutout case in Example 2, we saved a total of ~75 cents at a time cost of ~40

minutes. If our user is very lucky, this might cost them only about 5 billable work-minutes of

wasted time in context switching (checking progress bars and so on). In this near-best-case

scenario, we’ve ended up costing about $6.70 to save $0.75. Even if that’s our $0.75 and someone
else’s $6.70, repeated experiences of this kindmaymake them disinclined to use our services.We

saved < 40% on this AWS transaction, but imposed a > 500% brokerage fee on the research
community (even before considering secondary effects of lost productivity).

As for instance hours, if you execute subsetting operations on an on-demand EC2 instance that

save S3 costs but increase running time, those S3 cost savings are offset by the instance’s price per

hour. For instance, if this operation is running on anm6i.2xlarge instance (admittedly overpowered

for this application) with an on-demand rate of $0.38 cents an hour, we have incurred additional

total AWS fees by choosing full-line subsetting. (This is entirely separate from anymarginal

compute charges wemight incur with some instance families.)

reasons to care ii: resource constraints

bandwidth and rate limitations

Every server24 has bandwidth and request rate limitations. If you are doingmore than one thing at

a time on a server – or if multiple users are running tasks on the server – the server can run out of

bandwidth or have S3 throttle its request volume even if individually each are well below these

overall resource constraints. Workload prediction and optimization can enormously affect the

performance tradeoffs involved in subsetting, and overall workload can also be an indirect driver

of monetary costs25. For instance, even if you are transferring data only from EC2 instances to S3

buckets in the same region – and so incurring no direct egress fees –multiple high-transfer-rate

tasks may nevertheless saturate the instances’ network interfaces and degrade performance to

unacceptable levels. This might force you to increase your number of running instances, lengthen

the duty cycle of your on-demand instances, or purchasemore expensive instances with larger

amounts of available bandwidth – even if your existing instances havemore-than-adequate

system resources of all other kinds. Apparently-slow subsetting operationsmight be worth it to

take some of this load off.

memory

Most FITS images are not large enough that simply loading them intomemory from local storage

presents seriousmemory pressure considerations onmodern personal computers. There are

certainly exceptions, but memorymapping and similar I/O buffering strategies can usually handle

those exceptions. Complex processing pipelines that involve in-memory copies can of course put

pressure onworkingmemory, but optimized retrieval strategies do not improve those situations: if

you only need part of the array, you can just discard the rest frommemory before executing your

pipeline. So, most of the time, S3 subsetting isn’t anymore efficient in terms of workingmemory
requirements than just retrieving an entire object, scratching it to local storage, and loading the
portions of interest intomemory.

25A full discussion of workload prediction and optimization is beyond the scope of this document.

24Or other computing platform, including ‘serverless’ agents like AWS Lambda functions.

However, the scratch-to-disk strategy comes with downsides. Local storage volumes have their
own read/write overhead, so the operationwill be overall slower. You also have to implement the
scratch operation, which adds code or workflow complexity. And, of course, the space has to be

available, which can rule out some desirable architectures. For instance, many astronomical

analysis pipelines that operate on small sections of arrays are not computationally intensive, so it

can be appealing to execute them on extremely cheap cloud servers. However, if those small array

sections come from 120GB TESSCut cubes and you’re planning to scratch those cubes to disk, the

cost of maintaining local storage volumes for your servers will quickly come to overshadow the

cost of the servers themselves. This gets worse if you’d like to use a serverless architecture based

on AWS Lambda: scratching even one of these files from S3 to disk would simply be impossible,
because Lambda local storagemaxes out at 10 GB. If you retrieve array sections with subsetting

techniques, however, these problems go away. This is an extreme example, but it illustrates the

fact that, in many situations, using subsetting qualitatively, not just quantitatively, improves the
capabilities of compute resources, and, by extension, makes a greater variety of IT architectures
feasible.

parallelization
Analysis of performance considerations involved in parallelized retrieval operations is difficult and

involved. However, because S3 request parallelization is effective and ubiquitous, this document

would be incomplete without a brief discussion of how parallelization can influence the

tradespace.

vocabulary

In this section, in order to keep our discussion relatively general and avoid overloading terms, we

use the following vocabulary:

● Workers are simultaneous or pseudo-simultaneous software execution contexts; this term
is an implementation-agnostic catchall for terms like ‘process’, ‘thread’, ‘coroutine’, ‘worker’,

etc. used in specific languages and computing environments.

● Threads are simultaneous hardware execution contexts, whether provided bymultiple
physical processor cores, simultaneousmultithreading technologies, or whatever else.

Our discussion to this point assumed that all S3 requests and retrievals occur in series. It is

perfectly reasonable to execute S3 operations in series, and this has some advantages in code

complexity and stability. However, because of S3’s content delivery infrastructure, it deals very

well with parallel requests, to the point thatAmazon explicitly recommends executing S3
operations in parallel as a first-line optimization strategy.Unless you are in a very
bandwidth-starved environment, you can typically achieve a higher total transfer rate across

multiple transfers; similarly, there is a large domain where request latency scales very little with

request volume26.

S3 calls parallelize sowell that parallelization is often used for full-object retrieval.Many S3

interfaces use adaptivemultipart upload/download strategies to parallelize transfers, looking for

the same sorts of crossovers between request latency and transfer timewe considered in our

discussion of serial subset retrieval. This alsomeans that parallelization is built intomany
off-the-shelf general-purpose cloud access technologies, so parallelization does not necessarily
incur serious code complexity / fragility or development time costs (although it can).

Intense parallelism tends to bemost effective when there are lots of operations to perform. The

overhead of managing lots of workers becomes relatively more expensive when there isn’t much

for eachworker to do.

limits to parallelism

When executed in environments with high connectivity to S3, parallelization of subsetting
operations is often limited by system resources, especially CPU resources.27 This fact is
counterintuitive for many IT professionals, who tend to assume that networking resources will be

the bottleneck for networked operations. But subsetting can use networking resources very

efficiently, and performing read operations takes compute resources. At minimum, the requester

must compose a request, manage the byte stream that contains the response, and translate the

headers and body of the response into useful in-memory objects. Furthermore, any type of parallel
code execution – not just in the context of S3 reads – incurs overhead: worker spawning, context

switching, interworker communication, andmemorymanagement (of bothmain and CPU cache

memory).28 Individual read operations are computationally inexpensive; there are few computing

platformswewould be likely to consider for scientific data processing that would bemeaningfully

stressed by S3 reads in series. However, executing and handlingmultiple read operations in

parallel can quickly become burdensome.

More specifically, effective worker count is often bottlenecked by the number of available CPU

threads. Single-thread performance is not typically very important for retrieval (although it can

provide some improvements if inline decompression is involved). Other factors like CPU cache size

and speed can certainly be important, depending in part on the size of the retrieved subsets, but

they are not generally dominant.

28Because S3 read operations are not very computationally complex, we assume here that worker handling
is managed gracefully enough in our technology stack that we can simply abstract these overhead costs into
overall system resource pressure. This is not the case in every stack, however, so take care.

27Because parallelism can use a lot of CPU, long-running parallel operations on CPU-metered ‘burstable’
EC2 instances like the t3/t3a/t4g families will tend to increase EC2 instance charges, often in an
unpredictable way. An instance typewithout CPUmetering will often bemore economical in these
applications, even if its base price per hour is higher.

26 Eventually S3will begin throttling you, or youmay even overwhelm intermediate network layers.

Note that parallelism also incurs workingmemory costs – at minimum, additional bytes must be

held in memory as transfers complete, and handling and concatenation of array elements generally

also hasmemory costs. Peakmemory usage usually scales at least linearly with the number of

workers. For small subsets or small numbers of target objects, this often doesn’t matter, but in

some cases, it restricts the feasibility of coarser subsetting strategies, mandates the use of

(generally more expensive) servers withmore workingmemory, or requires implementation of

careful (and usually slow) optimizations like scratch-writes to local storage or aggressive inline

garbage collection.

All this being said, S3 read operation parallelism is also often limited by available bandwidth or
request rate. If you saturate the total transfer volume your network interface or intermediate
carriers can handle, or hit a number of requests/second at which S3 (or an intermediate carrier)

begins aggressively throttling your requests, further increasing your worker count is useless.

These network limitations are highly environment-dependent; you aremore likely to find that they

are bottlenecks from your living room than from an EC2 instance. They are also

application-dependent: if you are taking full-extension subsets from large FITS objects, you are

very likely to find that your useful worker count is limited by bandwidth even on EC2.

tradespace: worker count and time
There are three primary domains of the worker count <-> time tradespace for S3 reads:

domain 1

At lowworker count, addingworkers ~linearly increases performance. In this domain, the ratio
of parallel execution time to serial execution time is roughly equal to the integral of 1/n^2

evaluated from 1 toworker count, or, more succinctly, 1 - (worker count - 1) / worker count.

(Sometimes there is also a constant offset (which can be positive or negative) from strict serial

execution.) This means that themarginal time savings provided by each additional worker drops

off quite quickly evenwithin this domain: if an activity takes 20 seconds in series, adding one

worker saves 10 seconds, adding another saves another 3.3 seconds; adding another saves

another 1.7 seconds, and so on.

domain 2

Eventually, a variety of factors push operation rate increase out of this linear domain; adding
additional workers after this has diminishing performance returns per worker (unless you hit
the “wall” of domain 3 first). This decrease is multifactorial; it may be driven by parallelization
overhead, request throttling, transient contact with bandwidth limits, etc., in any combination.

Because the rate of decrease is so environment- and application-dependent, there is no goodway

to produce a general-purpose formula for it; if you are looking to optimize worker count in this

domain, youmust benchmark it in the context of your use case and execution environment. But

here are a couple of heuristics:

Unless some other factor takes over first, applications tend to cross into domain 2 at ~2workers
per thread, and diminishing returns tend to be sharp after ~4workers per thread. Past this,
cache thrashing and excessive context switches start to become very important. If

computationally-expensive intermediate steps like inline decompression are involved, this dropoff

is considerably sharper.

For smallish cutouts retrieved by EC2 instances from S3 buckets in the same region using
full-line or similar subsetting techniques, a transition into domain 2 generally becomes quite
noticeable by 12-16workers – even on instances withmanymore available threads – and very
often earlier. This is most likely due to request throttling.

domain 3

There is a “wall” past which higher worker count never helps and usually hurts. You run out of
threads or bandwidth, or reach a point where parallelization overhead costs more than the benefit

offered by an additional worker, or S3 stops tolerating your flood of requests.

In any given application or environment, the factor(s) that produce this wall are not necessarily the
same ones that degrademarginal performance increase per worker in domain 2. Sometimes this

evenmeans you never reach domain 2: for instance, sometimes 2workers are 2x as fast as 1, and 3

workers are 3x as fast, and then suddenly you run out of bandwidth and adding a 4th worker just

uses more of your CPU resources for no benefit.

Conversely, sometimes the factor(s) that drive the decrease in per-worker returns are the same as
those that produce this wall. In these cases, domain 2 smoothly transitions into domain 3 as the

performance/worker curve flattens to horizontal.

In some very bad cases for parallelism, you never even reach domain 1: for instance, if you are

transferring large objects on a weakwifi connection, one worker may eat up all your bandwidth.

enabling technologies

S3 interfaces
Because of the development time costs of manually composing S3 API requests, it is usually

preferable to use an off-the-shelf interface to the S3 API. In this investigation, we principally

explored two types of S3 API interfaces: S3 FUSE implementations (principally goofys) and
Python-language S3 support libraries (principally fsspec/S3FS). However, there aremany other S3
interfaces whichmight be worth considering for other use cases. Some are software libraries

designed for use in other code (including Amazon’s official libraries like boto3 for Python and the

AWS SDK for Java, and unofficial libraries like rusty-s3 for Rust). Others are self-contained
applications (like the AWSCLI), or components of more general-purpose applications (like

Cyberduck’s S3 features). Many of these interfaces, however, do not provide abstractions for

subsetting. For instance, while it is possible to perform subsetting operations with the boto3
Python library, youmust do so by explicitly passing byte ranges to botocore.client.S3.get_object()
calls. This is not very convenient.

FUSE
FUSE (Filesystem in USEr Space) is a framework that allows userspace applications to access

external data volumes or data sources as if they were ‘normal’ filesystems, without requiring

elevated privileges. It was originally developed for Unix-like systems, and ships withmost

widely-used Unix variants, includingmost major Linux distributions; versions also exist forMacOS,

and a compatibility layer exists forWindows.

FUSE implementations exist for a wide variety of filesystems, services, and protocols, from exFAT

to FTP to S3. FUSE interfaces to S3 essentially ‘trick’ the operating system into seeing S3 objects

as files. Filesystems have existed in something close to their current form for almost half a century,

and almost all software knows how towork with files. The filesystem is the ultimate compatibility
layer. This is the primary advantage of FUSE interfaces to S3.

This means that FUSE allows scientists to use their existing workflows in the cloud.Most

applications designed for local FITS files work transparently on FUSE-mapped S3 objects. For

instance, when combinedwith FUSE, STScI’s fitscut tool instantly becomes an S3 subsetting
application.29GUI applications like ds9 and fv offer browsing interfaces to FITS objects in S3. This
applies to general-purpose system utilities as well: for instance, object management is made easier

by the fact that GUI file managers work on FUSE-mapped objects, as do shell commands like ls, cp,
and rm. Operating system-level features likememory caching also work with FUSE interfaces,
meaning that you get many subsetting optimizations for ‘free’.

Similarly, FUSE interfaces are compatible with scientific codes written in almost any computer

language.Whether an astronomer works inMATLAB, C, Python, Rust, R, IDL, Go, shell script, or

Fortran, a FUSE interface will generally allow their codes to work with S3 objects.

other advantages of FUSE-backed S3 access

● FUSE is mature (in continuous release since the late 1990s), well-supported, and extremely

widely-used (for instance, Androidmanages SD cardmounts with FUSE, meaning that a

large proportion of all living humans use FUSE daily).

● it ‘just works’. Astronomers who are not software engineers can simply ‘mount’ an S3

bucket, pretend the objects in the bucket are files, and suffer no serious consequences for

29 Is it fully optimized? Probably not. But initial testing suggests that it is satisfyingly performant for S3
subsetting with absolutely no additional development work.

doing so. Although a particular codemay not be fully optimal for use with file-mapped S3
objects, it can still leveragemany of the advantages of cloud storage without the project

bottlenecks and costs sometimes associated with cloud development. This vastly lowers
the learning curve for scientists whowish to access cloud resources.

● Because they can leveragemany existing built-in optimizations for file access, codes that

run against S3 FUSE interfaces are often highly performant out-of-the-box without

additional development work.

disadvantages of FUSE-backed S3 access

● An S3 FUSE interfacemust be installed on the host – while goofys and similar interfaces
provide compiled binaries, making installation very easy, this may still present barriers in

some environments.

● FUSE kernel libraries (libfuse or equivalent) must be installed on the host; they ship with
many operating systems, but not with all, and this may add installation complexity.

● While most environments permit non-privileged users tomanage FUSEmounts (this is

part of the point of FUSE), this presents security issues in some computing frameworks

(like Kubernetes). In these environments, FUSEmounts must bemanaged by system

administrators, which reduces flexibility andmay increase staff workloads.

● It is generally difficult to perform flexible optimizations on the per-operation level – the

interface abstracts toomuch.While application-appropriate settings can often be defined

at mount time, theremay be cases in which greater control is desired.

● Theways objects differ from files make certain operations inefficient in ways no amount of

trickery can fix. Read operations are generally fairly safe; it is muchmore common to

encounter bad cases in write operations.30

● While FUSE interfaces reduce complexity in manyways, they do add an additional layer to
the technology stack, and, concomitantly, an additional point of failure.

language-specific libraries

Interfaces to S3 can also be implemented at the software library level rather than theOS (or

application) level. Our type example in this investigation was the Python interface S3FS, an
implementation of the Python fsspec framework for building interfaces between external data
sources and Python filelike objects. As part of the Fornax effort, G. Barentsen developed an

extension to the widely-used Python astropy library’s FITS interface (astropy.io.fits) that utilizes
S3FS to allow astropy to fluidly access FITS resources stored in S3; it includes subsetting features31.
astropy is a linchpin of the contemporary astronomical software ecosystem and, as such,

something of a special case, but we canmake several general observations about software library

S3 interfaces as opposed to FUSE-backed application/OS layers:

31Accessed via the section attribute of astropy.io.fits.hdu.image.ImageHDU.

30 For instance, it is impossible to perform randomwrites to objects, so applications that attempt random
writes will in fact delete and recreate the entire object over and over. Other kinds of interfaces won’t make
this work well, either – it’s impossible – but they often won’t even let you try.

● Without additional software development to write wrappers or leverage foreign function

interfaces, they can only support codes written in their language. For instance, S3FS is of
no use to an astronomerworking inMATLAB. Similarly, they cannot support external
applications without glue or wrapper code.

● Optimizing codes backed by libraries of this type typically takesmore effort than
optimizing codes backed by FUSE layers, because they are unable to leverageOS
resources as readily.

● However, they are often easier to optimize for specific use cases, particularly for

developers who are highly proficient in the language and frameworks they support

(although optimization, of course, comes at the cost of additional development time).

● Similarly, they can be integrated into compatible software libraries to extend their

capabilities to cloud, which can be especially useful for widely-used support libraries.

● Unlike application layers, software libraries of this type often do not require installation
of OS-level libraries. This sometimesmakes themmore environment-agnostic.

● Conversely, they do require installation of language libraries. In Python, environment
management tools like condamake this relatively easy, but there are nevertheless pitfalls.
It is muchmore difficult in some languages. Furthermore, compatibility between language

libraries and system libraries is never quite guaranteed. To some extent, this pushes

compatibility problems onto the language interpreter, environment, and/or runtime.

tile compression
Many existing astronomical data sets are very large. Managing this by storing astronomical data in

compressed formats has been common for decades, although storing data in massive sets of

uncompressed raster arrays remainsmore common. However, due tomany factors, newmissions

are generating ever-greater volumes of data. These data volumes are increasingmuch faster than
generally-available bandwidth is increasing, and somewhat faster than storage costs are

decreasing. For these reasons, it is increasingly urgent that data producers and archives have
access to effective, usable compression schemes in order to keep their datamanageable and
accessible.

Traditional compressionmodalities aremonolithic: they compress entire data resources at once.
For FITS, themost common technique is gzipping entire files32. This is extremely easy to implement

and often fairly storage-efficient, especially on files whose volumemostly consists of sparse

arrays. Themajor downside of this technique is that amonolithically-gzipped resource can only be

interpreted as a stream; there is no consistent way to “seek” into it and find the specific data you’re

looking for. In the general case, it is impossible to use subsetting techniques on
monolithically-compressed files.

32 In other words, compressing them using one of themany implementations of the DEFLATE algorithm: zlib,
libdeflate, ISA-L igzip, etc.

However, it is possible to perform compression on FITS files at amore granular level. Individual

extensions can be compressed (although it is not particularly common to do so) which permits

subsetting at the single-HDU level. But, for images, there is an even better technique: tile
compression. Tile compression defines a tiling on an array33, individually compresses each tile, and
stores the compressed tiles in a binary table HDU (along with references to their location in the

uncompressed array). It is easy to subset tile-compressed arrays – range requests can simply
fetch the necessary row or rows of the table, and the tiles can be decompressed into array

elements after retrieval. The FITS format supports tile compression with a variety of algorithms;

we have found that the RICE algorithm is typically themost performant algorithm for subsetting

(andmost other purposes).34

Subsetting is sometimes faster and sometimes slower on tile-compressed images. Compression

increases the transfer volume savings of each read operation but introduces decompression

overhead. It becomesmore time-efficient when transfer savings outweigh handling costs of inline

decompression, so the less transfer speed you have, themore time-efficient subsetting
tile-compressed resources becomes. Its time performance frequently ends up being a wash, or a
tradeoff between CPU and bandwidth. It is alwaysmore transfer-volume efficient (and thus
cheaper in terms of data egress) except in pathological cases.But the real benefit of tile
compression is qualitative: tile compression lets you subset compressed images, which is
otherwise impossible.Data storage and transfer volume can be enormously reducedwithout
forcing users to perform full-object transfers for every operation.We believe that tile
compression is an extremely important enabling technology for cloud access to rapidly-growing
astronomical data archives.

Most FITS-reading and -writing libraries support tile compression, but their degree of support

varies. One notable hiccup for Python users whose workflows rely on the rich astropy ecosystem
is that astropy does not support reading individual tiles from compressed images, whether from
S3 or local storage. This means that, unless and until astropy adds this feature, Python users who
wish to subset tile-compressed FITS resources past the single-HDU level must use the

CFITSIO-backed Python library fitsio or wrap non-Python tools like STScI’s fitscut.

34 It has certain downsides, notably that it is slightly lossy on floating-point arrays (although lossless for
integer arrays). Its degree of lossiness is tunable, andwe believe that it is likely to introduce only trivial
amounts of error intomost analysis pipelines. See our separate report on this topic:
https://github.com/MillionConcepts/fornax-documents/blob/main/compression%20comparison.pdf

33 For 2D arrays, it is common to simply treat each row of the array as a separate tile. There does not appear
to be a standard convention for tile sizes on >2D arrays.

https://github.com/MillionConcepts/fornax-documents/blob/main/compression%20comparison.pdf

references
AmazonWeb Services (AWS). Amazon Simple Storage Service: API Reference.API version
2006-03-01, primary release 2019-03-27, revision 2022-02-18.

https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf (note: stable URLs to historical
versions of AWS documentation are not available, so contents may change).

Cheung, Ka-Hing, et al. goofys. 2015-2022. https://github.com/kahing/goofys

Fielding, R., Ed., Nottingham,M., Ed., and J. Reschke, Ed., "HTTP Semantics", STD 97, RFC 9110,

DOI 10.17487/RFC9110. June 2022. https://www.rfc-editor.org/info/rfc9110.

Greisen, E.W. andHarten, R. H. “An Extension of FITS for Groups of Small Arrays of Data”,

Astronomy and Astrophysics Supplement Series 44, p. 371. 1981.

International Astronomical Union FITSWorking Group (IAUFWG).Definition of the Flexible Image
Transport System (FITS). Version 4.0 (language-edited update). 2018 August 13.
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

NASAOffice of Science and Technology (NOST).Definition of the Flexible Image Transport System
(FITS). Version 1.0 (NOST 100-1.0). 1993 June 18.
https://fits.gsfc.nasa.gov/standard10/fits_standard10.pdf

White, R. et al. “Tiled Image Convention for Storing Compressed Images in FITS Binary Tables.”

Version 2.3. 2013 July 2.

https://fits.gsfc.nasa.gov/registry/tilecompression/tilecompression2.3.pdf

https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
https://github.com/kahing/goofys
https://www.rfc-editor.org/info/rfc9110
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
https://fits.gsfc.nasa.gov/standard10/fits_standard10.pdf
https://fits.gsfc.nasa.gov/registry/tilecompression/tilecompression2.3.pdf

